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Abstract. This research describes a probabilistic approach for developing
predictive models of how students learn problem-solving skills in general
qualitative chemistry. The goal is to use these models to apply active, real-time
interventions when the learning appears less than optimal. We first use self-
organizing artificial neural networks to identify the most common student
strategies on the online tasks, and then apply Hidden Markov Modeling to
sequences of these strategies to model learning trajectories. We have found that:
strategic learning trajectories, which are consistent with theories of competence
development, can be modeled with a stochastic state transition paradigm;
trajectories differ across gender, collaborative groups and student ability; and,
these models can be used to accurately (>80%) predict future performances.
While we modeled this approach in chemistry, it is applicable to many science
domains where learning in a complex domain can be followed over time.

1   Introduction

Real-time modeling of how students approach and solve scientific problems is
important for understanding how competence in scientific reasoning develops, and for
using this understanding to improve all students’ learning. Student strategies, whether
successful or not, are aggregates of multiple cognitive processes [1], [2] including
comprehending the material, searching for other relevant information, evaluating the
quality of the information, drawing appropriate inferences from the information, and
using self-regulation processes to help keep the student on track [3], [4], [5], [6], [7].
While it is unreasonable to expect students to become domain experts, models of
domain learning suggest that students should at least be expected to make significant
progress marked by changes in knowledge, and strategic processing [8].

Documenting student strategies at various levels of detail can provide evidence of a
student’s changing understanding of the task, as well as the relative contributions of
different cognitive processes to the strategy [9]. Given sufficient detail, such
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descriptions can provide a framework for providing feedback to the student to
improve learning, particularly if the frameworks developed had predictive properties.
Our long-term goal has been to develop online problem-solving systems, collectively
called IMMEX (Interactive Multi-Media Exercises) to better understand how
strategies are developed during scientific problem solving [10], [11]. IMMEX
problem solving follows the hypothetical-deductive learning model of scientific
inquiry [12], [13] where students need to frame a problem from a descriptive scenario,
judge what information is relevant, plan a search strategy, gather information, and
eventually reach a decision that demonstrates understanding (http://www.
immex.ucla.edu). Over 100 IMMEX problem sets have been created by teams of
educators, teachers, and university faculty that reflect disciplinary learning goals, and
meet state and national curriculum objectives and learning standards.

In this study, the problem set we used to model strategic development is termed
Hazmat, and provides evidence of student's ability to conduct qualitative chemical
analyses (Figure 1). The problem begins with a multimedia presentation, explaining
that an earthquake caused a chemical spill in the stockroom and the student's
challenge is to identify the chemical. The problem space contains 22 menu items for
accessing a Library of terms, the Stockroom Inventory, or for performing Physical or
Chemical Testing. When the student selects a menu item, she is asked to confirm the
test requested and is then shown a multimedia presentation of the test results (e.g. a
precipitate forms in the liquid or the light bulb switches on suggesting an electrolytic
compound). When students feel they have gathered adequate information to identify
the unknown they can attempt to solve the problem. The IMMEX database collects
timestamps of each student selection.

Fig. 1. HAZMAT This composite screen shot of Hazmat illustrates the challenge to the student
and shows the menu items on the left side of the screen. Also shown are two of the test items
available. The item in the upper left corner shows the result of a precipitation reaction and the
frame at the lower left is the result of flame testing the unknown
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To ensure that students gain adequate experience, this problem set contains 34 cases
that can be performed in class, assigned as homework, or used for testing. These cases
are of known difficulty from item response theory analysis (IRT [14]), helping
teachers select “hard” or “easy” cases depending on their student's ability [15].
Developing learning trajectories from these sequences of intentional student actions is
a two-stage process. First, the strategies used on individual cases of a problem set are
identified and classified with artificial neural networks (ANN) [16], [15], [17], [18].
Then, as students solve additional problems, the sequences of strategies are modeled
into performance states by Hidden Markov Modeling (HMM) [19].

1.1   Identifying Strategies with Artificial Neural Network Analysis

The most common student approaches (i.e. strategies) to solving Hazmat are
identified with competitive, self-organizing artificial neural networks (SOM) using
the student's selections of menu items as they solve the problem as input vectors [15],
[17]. Self-organizing maps learn to recognize groups of similar performances in such
a way that neurons near each other in the neuron layer respond to similar input vectors
[20]. The result is a topological ordering of the neural network nodes according to the
structure of the data where geometric distance becomes a metaphor for strategic
similarity. Often we use a 36-node neural network and train with between 2000-5000
performances derived from students with different ability levels (i.e. regular, honors
and AP high school and university freshmen) and where each student performed at
least 6 problems of the problem set. Selection criteria for the numbers of nodes, the
different architectures, neighborhoods, and training parameters have been described
previously [17]. The components of each strategy in this classification can be
visualized for each of the 36 nodes by histograms showing the frequency of items
selected (Figure 2).

Fig. 2. Sample Neural Network Nodal Analysis. A. This analysis plots the selection frequency
of each item for the performances at a particular node (here, node 15). General categories of
these tests are identified by the associated labels. This representation is useful for determining
the characteristics of the performances at a particular node, and the relation of these
performances to those of neighboring neurons. B. This figure shows the item selection
frequencies for all 36 nodes following training with 5284 student performances

Node

1 – 6

7 - 12

13 - 18

19 - 24

25 - 30

31 - 36
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Most strategies defined in this way consist of items that are always selected for
performances at that node (i.e. those with a frequency of 1) as well as items that are
ordered more variably. For instance, all Node 15 performances shown in Figure 2 A
contain the items 1 (Prologue) and 11 (Flame Test). Items 5, 6, 10, 13, 14, 15 and 18
have a selection frequency of 60 - 80% and so any individual student performance
would contain only some of these items. Finally, there are items with a selection
frequency of 10-30%, which we regard more as background noise.

Figure 2 B is a composite ANN nodal map, which illustrates the topology generated
during the self-organizing training process. Each of the 36 graphs in the matrix
represents one node in the ANN, where each individual node summarizes groups of
similar students problem solving performances automatically clustered together by the
ANN procedure. As the neural network was trained with vectors representing the
items students selected, it is not surprising that a topology developed based on the
quantity of items. For instance, the upper right hand of the map (nodes 6, 12)
represents strategies where a large number of tests have been ordered, whereas the
lower left corner contains strategies where few tests have been ordered.

A more subtle strategic difference is where students select a large number of
Reactions and Chemical Tests (items 15-21), but no longer use the Background
Information (items 2-9). This strategy is represented in the lower right hand corner of
Figure 2 B (nodes 29, 30, 34, 35, 36) and is characterized by extensive selection of
items mainly on the right-hand side of each histogram. The lower-left hand corner and
the middle of the topology map suggest more selective picking and choosing of a few,
relevant items. In these cases, the SOM’s show us that the students are able to solve
the problem efficiently, because they know and select those items that impact their
decision processes the most, and which other items are less significant.

Once ANN’s are trained and the strategies represented by each node defined, then
new performances can be tested on the trained neural network, and the node (strategy)
that best matches the new performance can be identified. Were a student to order
many tests while solving a Hazmat case, this performance would be classified with
the nodes of the upper right hand corner of Figure 2 B, whereas a performance where
few tests were ordered would be more to the left side of the ANN map. The strategies
defined in this way can be aggregated by class, grade level, school, or gender, and
related to other achievement and demographic measures. This classification is an
observable variable that can be used for immediate feedback to the student, serve as
input to a test-level scoring process, or serve as data for further research.

1.2   Hidden Markov Model Analysis of Student Progress

This section describes how we can use the ANN performance classification procedure
described in the previous section to model student learning progress over multiple
problem solving cases. Here students perform multiple cases in the 34-case Hazmat
problem set, and we then classify each performance with the trained ANN (Table 1).
Some sequences of performances localize to a limited portion of the ANN topology
map like examples 1 or 3, suggesting only small shifts in strategy with each new
performance. Other performance sequences, like example 2 show localized activity on
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the topology activity early in the sequence followed by large topology shifts
indicating more extensive strategy shifts. Others illustrate diverse strategy shifts
moving over the entire topology map (i.e. examples 4, 5).

Table 1. Student Learning Sequences. The sequence of the ANN node classifications of student
performances are traced for 5 students. By mapping these sequences to the performance
characteristics at each node of the trained ANN, a description of each student's progress can be
generated. By examining the topology of strategy change, trajectories can be classified as
localized (i.e. confined to a contiguous region of Figure 2 B), progressive (i.e. moving across
the ANN topology map), or shifting (i.e. making larger jumps across the map)

Example
Strategy
Sequence Description Trajectory

1 32 33 28 33 33
Limited test selections, few
background resources

Localized

2 12 18 24 20 1
Many tests becoming fewer with
progress.

Progressive

3 5 24 6 18 Many test selections. Localized
4 4 22 33 33 Resource extensive going to data. Shifting

5
4 6 14 25 30
19

Shifts between data rich and data
lean strategies.

Shifting

While informative, manual inspection and mapping of nodes to strategies is a time-
consuming process. One approach for dynamically, and automatically modeling this
information would be to probabilistically link the strategic transitions. However, with
1296 possible transitions in a 36-neuron map, full probabilistic models would likely
lack predictive power.

By using HMMs we have been able to aggregate the data and model the development
and progression of generalized performance characteristics. HMM's are used to model
processes that move stochastically through a series of predefined states [19]. These
methods had been used successfully in previous research efforts to characterize
sequences of collaborative problem solving interaction, leading us to believe that they
might show promise for also understanding individual problem solving [21], [22].
In our HMMs for describing student strategy development, we postulate, from a
cognitive task analysis, between 3-5 states that students may pass through as
competence develops. Then, many exemplars of sequences of strategies (ANN node
classifications) are repeatedly presented to the HMM modeling software to model
progress. These models are defined by a transition matrix that shows the probability
of transiting from one state to another and an emission matrix that relates each state
back to the ANN nodes that best represent that state. (Murphy, K.
http://www.ai.mit.edu/~murphyk/Software/HMM/hmm.html). Recall from the
previous section that each of these nodes characterizes a particular problem solving
strategy. The transitions between the 5 states describe the probability of students
transitioning between problem solving strategies as they perform a series of IMMEX
cases. While the emission matrices associated with each state provides a link between
student performances (ANN node classification) and progress (HMM states), the
transition matrix (describing the probability of moving from each state in the HMM to
each other state) can be used for analyzing / predicting subsequent performances.
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Both of these features are shown in Figure 3 with the transitions between the different
states in the center, and the ANN nodes representing each state at the periphery.
States 1, 4, and 5 appear to be absorbing states as these strategies once used are likely
to be used again. In contrast, students adopting State 2 and 3 strategies are less likely
to persist with those states but are more likely to transit to another state. When the
emission matrix of each state was overlaid on the 6 x 6 neural network grid, each state
(Figure 3), represented topology regions of the neural network that were often
contiguous (with the exception of State 4).

Fig. 3. Mapping the HMM Emission and Transition Matrices to Artificial Neural Network
Classifications. The five states comprising the HMM for Hazmat are indicated by the central
circles with the transitions between the states shown by the arrows. Surrounding the states are
the artificial neural network nodes most closely associated with each state

2   Results

As we wish to use the HMM to determine how students strategic reasoning changes
with time, we performed initial validation studies to determine 1) how the state
distribution changes with the number of cases performed, 2) whether these changes
reflect learning progress, and, 3) whether the changes over time 'make sense' from the
perspective of novice/expert cognitive differences.

The overall solution frequency for the Hazmat dataset (N= 7630 performances) was
56%, but when students' performance was mapped to their strategy usage as mapped
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by the HMM states these states revealed the following quantitative and qualitative
characteristics:

• State 1 – 55% solution frequency showing variable numbers of test items and little
use of Background Information;

• State 2 – 60% solution frequency showing equal usage of Background Information
as well as action items; little use of precipitation reactions.

• State 3 – 45% solution frequency with nearly all items being selected.
• State 4 – 54% solution frequency with many test items and limited use of

Background Information.
• State 5 – 70% solution frequency with few items selected Litmus test and Flame

tests uniformly present.
We next profiled the states for the dynamics of state changes, and possible gender and
group vs. individual performance differences.

Dynamics of State Changes. Across 7 Hazmat performances the solved rate
increased from 53% (case 1) to 62% (case 5) (Pearson χ2 =15.5, p=.008) and this was
accompanied by corresponding state changes (Figure 4). These longitudinal changes
were characterized by a decrease in the proportions of States 1 and 3 performances
and an increase and then decrease in State 2 performances and a general increase in
State 5 (with the highest solution frequency).

Fig. 4. Dynamics of HMM State Distributions with Experience and Across Classrooms. The
bar chart tracks the changes in all student strategy states (n=7196) across seven Hazmat
performances. Mini-frames of the strategies in each state are shown for reference

Group vs. Individual Performance. In some settings the students worked on the
cases in teams of 2-3 rather than individually. Group performance significantly
increased the solution frequency from a 51% solve rate for individuals to 63% for the
students in groups. Strategically, the most notable differences were the maintenance
of State 1 as the dominant state, the nearly complete lack of performances in States 2
and 3, and the more rapid adoption of State 4 performances by the groups (Figure 5).
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In addition, the groups stabilized their performances faster, changing little after the
third performance whereas males and females stabilized only after performance 5.
This makes sense because states 2 and 3 represent transitional phases that students
pass through as they develop competence. Collaborative learners may spend less time
in these phases if group interaction indeed helps students see multiple perspectives
and reconcile different viewpoints [23].

Fig. 5. State Distributions for Individuals and Groups

Also, shown in Figure 5 are the differences in the state distribution of performances
across males and females ((Pearson χ2 = 31.2, p<0.000). While there was a steady
reduction in State 1 performances for both groups, the females entered State 2 more
rapidly and exited more rapidly to State 5. These differences became non-significant
at the stable phase of the trajectories (performances 6 and 7). Thus males and females
have different learning trajectories but appear to arrive at similar strategy states.

Ability and State Transitions.  Learning trajectories were then developed according
to student ability as determined by IRT. For these studies, students were grouped into
high (person measure = 72-99, n = 1300), medium (person measure 50-72, n = 4336)
and low (person measure 20-50, n = 1994) abilities. As expected from the nature of
IRT, the percentage solved rate correlated with student ability. What was less
expected was that when the solved rate by ability was examined for the sequence of
performances, the students with the lowest ability had not only the highest solved rate
on the first performance, but also one that was significantly better than the highest
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ability students (57% vs 44% n = 866, p< 0.00). Predictably, this was rapidly reversed
on subsequent cases. To better understand these framing differences a cross-tabulation
analysis was conducted between student ability and neural network nodal
classifications on the first performances. This analysis highlighted nodes 3, 4, 18, 19,
25, 26, and 31 as having the highest residuals for the low ability students, and nodes
5, 6, 12, and 17 for the highest ability students. From this data, it appeared that the
higher ability students more thoroughly explored the problem space on their first
performance, to the detriment of their solution frequency, but took advantage of this
knowledge on subsequent performances to improve their strategies. These
improvements during the transition and stabilization stages include increased use of
State 5 performances, and decreased use of States 1 and 4; i.e. they become both more
efficient and effective

Predicting Future Student Strategies.  An additional advantage of a HMM is that
predictions can be made regarding the student's learning trajectory. The prediction
accuracy was tested in the following way. First, a ‘true’ mapping of each node and the
corresponding state was conducted for each performance of a performance sequence.
For each step of each sequence, i.e. going from performance 2 to 3, or 3 to 4, or 4 to
5, the posterior state probabilities of the emission sequence (ANN nodes) were
calculated to give the probability that the HMM is in a particular state when it
generated a symbol in the sequence, given that the sequence was emitted. For
instance, ANN nodal sequence [6 18 1] mapped to HMM states (3 4 4). Then, this
'true' value is compared with the most likely value obtained when the last sequence
value was substituted by each of the 36 possible emissions representing the 36 ANN
nodes describing the student strategies. For instance, the HMM calculated the
likelihood of the emission sequences, [6 18 X] in each case where X = 1 to 36. The
most likely emission value for X (the student’s most likely next strategy) was given
by the sequence with the highest probability of occurrence, given the trained HMM.
The student’s most likely next performance state was then given by the state with the
maximum likelihood for that sequence.

Comparing the 'true' state values with the predicted values estimated the predictive
accuracy of the model at nearly 90% (Table 2). As the performance sequence
increased, the prediction rate also increased, most likely reflecting that by
performances 4, 5 and 6, students are repeatedly using similar strategies.

Table 2. Prediction of Future Performances

Performance # 1 2 3 4 5 6
% Correct
Predictions

67 75 83 88 86 91

3   Discussion

The goal of this study was to explore the use of HMMs to begin to model how
students gain competence in domain-specific problem solving. The idea of ‘learning
trajectories’ is useful when thinking about how students progress on the road to
competence [24]. These trajectories are developed from the different ways that
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novices and experts think and perform in a domain, and can be thought of as defining
stages of understanding of a domain or discipline [4]. During early learning, students'
domain knowledge is limited and fragmented, the terminology is uncertain and it is
difficult for them to know how to properly frame problems. In our models, this first
strategic stage is best represented by State 3 where students extensively explore the
problem space and select many of the available items. As expected, the solved rate for
such a strategy was poor. This approach is characteristic of surface level strategies or
those built from situational (and perhaps inaccurate) experiences. From the transition
matrix in Figure 4, State 3 is not an absorbing state and most students move from this
strategy type on subsequent performances.

With experience, the student's knowledge base becomes qualitatively more structured
and quantitatively deeper and this is reflected in the way competent students, or
experts approach and solve difficult domain-related problems. In our model States 2
and 4 would best represent the beginning of this stage of understanding. State 2
consists of an equal selection of background information and test information,
suggesting a lack of familiarity of the nature of the data being observed. State 4 on the
other hand shows little/no selection of background information but still extensive and
non-discriminating test item selection. Whereas State 2 is a transition state, State 4 is
an absorbing state - perhaps one warranting intervention for students who persist with
strategies represented by this state.

Once competence is developed students would be expected to employ both effective
and efficient strategies. These are most clearly shown by our States 1 and 5. These
states show an interesting dichotomy in that they are differentially represented in the
male and female populations with males having a higher than expected number of
State 1 strategies and females higher than expected State 5 strategies.

The solution frequencies at each state provide an interesting view of progress. For
instance, if we compare the earlier differences in solution frequencies with the most
likely state transitions from the matrix shown in Figure 4, we see that most of the
students who enter State 3, having the lowest problem solving rate (45%), will transit
either to State 2 or 4. Those students who transit from State 3 to 2 will show on
average a 15% performance increase (from 45% to 60%) and those students who
transit from States 3 to 4 will show on average a 9% performance increase (from 45%
to 54%). The transition matrix also shows that students who are performing in State 2
(with a 60% solve rate) will tend to either stay in that state, or transit to State 5,
showing a 10% performance increase (from 60% to 70%). This analysis shows that
students' performance increases as they solve science inquiry problems through the
IMMEX Interactive Learning Environment, and that by using ANN and HMM
methods, we are able to track and understand their progress.

When given enough data about student’s previous performances, our HMM models
performed at over 90% accuracy when tasked to predict the most likely problem
solving strategy the student will apply next. Knowing whether or not a student is
likely to continue to use an inefficient problem solving strategy allows us to
determine whether or not the student is likely to need help in the near future. Perhaps
more interestingly, however, is the possibility that knowing the distribution of
students’ problem solving strategies and their most likely future behaviors may allow
us to strategically construct collaborative learning groups containing heterogeneous
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combinations of various behaviors such that intervention by a human instructor is
required less often [25].

Finally, our studies provide some information on the effects of collaborative learning
when students perform the cases. In particular, collaborative problem solving
appeared to reduce the use of strategies in States 2 and 3, which are the most
transitory states. In this regard, one effect of the collaboration may be to help groups
more rapidly establish stable patterns of problem solving. A question of interest
would be whether or not these states persist once students engage again in individual
problem solving.
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